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ABSTRACT 

In this paper, we obtain a fixed point result in a complex-valued double controlled metric-like space and provide an 

example in support of our result 
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INTRODUCTION 

Banach’s contraction principle has long been one of the most important tools in the study of nonlinear problems, and the 

Banach fixed point theorem has numerous applications both inside and outside mathematics. Bakhtin [1] introduced the 

concept of a b-metric space and established several fundamental results, which were later generalized by many other 

researchers (see [2, 3]). Kamran et al. [4] and others extended the notion of b-metric spaces by controlling the triangle 

inequality rather than using a control function in the contractive conditions. 

Ullah et al. [5] introduced the concept of complex-valued extended b-metric spaces and obtained some fixed point 

results. Mlaiki et al. [6] and Abdeljawad et al. [7] proposed double controlled metric-type spaces and established the 

Banach contraction principle in this setting. The classical definition of a metric space was generalized by Harandi [8], who 

introduced the notion of a metric-like space. Mlaiki [9] and Aysegul [10] further extended this idea by defining double 

controlled metric-like spaces and proving related fixed point theorems. 

Azam [11] introduced the complex-valued metric space, while Panda [12] proposed the complex-valued double 

controlled metric space. Hosseini and Karizaki [13] generalized Panda’s results by introducing the complex-valued metric-

like space. Chowdhary et al. [14] further developed this line of research by defining the complex-valued double controlled 

metric-like space. 

Recently, Souayah and Hidri [15] proved a fixed point theorem for Caristi contraction mappings in controlled 

metric spaces. In this paper, we establish a fixed point result in the framework of complex-valued double controlled metric-

like spaces using Caristi contraction mappings. We also provide an illustrative example to support our findings. Our results 

generalize those of Souayah and Hidri [15] and several others. 
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PRELIMINARIES 

Let us recall some definitions, useful in the introductions of our concept. 

Let C be the set of complex numbers and w1, w2 ε C . w1 ≤ w2 if and only if  

Re( w1) ≤ Re (w2) or Re( w1)  =  Re (w2) and Im( w1) ≤ Im(w2). 

Taking into account the previous definition, we have that w1 ≤ w2 if one of the next conditionsis satisfied: 

 Re( w1)  < Re (w2) and Im( w1)  <Im(w2); 

 Re( w1)  < Re (w2) and Im( w1)  =  Im(w2); 

 Re( w1)  < Re (w2) and Im( w1)   >Im(w2); 

 Re( w1)  =  Re (w2) and Im( w1)  <Im(w2); 

Definition 2.1 [1] 

Let $ ≠ ɸ and ᵿ ≥ 1be a given real number. Let £: $ x $  → [0,+ ∞) be a function is called b- metric if 

 £(ꝓ, ꝗ) ≥ 0, `                      

 £(ꝓ, ꝗ) = 0 if and only if   ꝓ = ꝗ,    

 £(ꝓ, ꝗ) = £(ꝗ, ꝓ),       

 £(ꝓ, ꝗ) ≤  ᵿ [£(ꝓ, ꞡ) + £(ꞡ, ꝗ)] ∀ ꝓ, ꝗ, ꞡ ε $. 

A pair ($, £) is called a b-metric space. Clearly, every metric space is a b-metric space (with s=1), but in general, 

a b-metric space is a proper extension of the usual metric space. 

Definition 2.2 [5]  

Let $ ≠ ɸ and given a function θ : $ x $  → [1,+ ∞). Let £ : $ x $  → C  be a function is called complex - valued extended 

b- metric if the following conditions are satisfied 

 £(ꝓ, ꝗ) ≥ 0, `    

 £(ꝓ, ꝗ) = 0 if and only if ꝓ = ꝗ,        

 £(ꝓ, ꝗ) = £(ꝗ, ꝓ),    

 £(ꝓ, ꝗ) ≤  θ(ꝓ,ꝗ)[£(ꝓ, ꞡ) + £(ꞡ, ꝗ)] ∀ ꝓ, ꝗ, ꞡ ε $. 

A pair ($, £) is called an complex- valued extended b-metric space.  

Definition 2.3 [6] 

Let $ ≠ ɸ and given a function θ : $ x $  → [1,+ ∞). Let £ : $ x $  → [0,+ ∞) be a function is called controlled metric if 

 £(ꝓ, ꝗ) ≥ 0, `                            

 £(ꝓ, ꝗ) = 0 if and only if  ꝓ = ꝗ,         

 £(ꝓ, ꝗ) = £(ꝗ, ꝓ),             
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 £(ꝓ, ꝗ) ≤  θ(ꝓ,ꞡ)£(ꝓ, ꞡ) + θ(ꞡ,ꝗ)£(ꞡ, ꝗ)] ∀ ꝓ, ꝗ, ꞡ ε $. 

A pair ($, £) is called a controlled metric space.  

Definition 2.4[7]  

Let $ ≠ ɸ and given a function θ,φ : $ x $  → [1,+ ∞). Let £ : $ x $  → [0,+ ∞) be a function .is called double controlled 

metric if 

 £(ꝓ, ꝗ) ≥ 0, `    

 £(ꝓ, ꝗ) = 0 iff   ꝓ = ꝗ,  

 £(ꝓ, ꝗ) = £2(ꝗ, ꝓ),            

 £(ꝓ, ꝗ) ≤  θ(ꝓ,ꞡ)£(ꝓ, ꞡ) + φ(ꞡ,ꝗ)£(ꞡ, ꝗ)] ∀ ꝓ, ꝗ, ꞡ ε $. 

A pair ($, £) is called a double controlled metric space.  

Definition 2.5 [9] 

Let $ ≠ ɸ and given a function θ,φ : $ x $  → [1,+ ∞). Let £ : $ x $  → [0,+ ∞) be a function .is called double controlled 

metric- like  if 

 £(ꝓ, ꝗ) ≥ 0, `    

 £(ꝓ, ꝗ) = 0 implies    ꝓ = ꝗ,       

 £(ꝓ, ꝗ) = £2(ꝗ, ꝓ),     

 £(ꝓ, ꝗ) ≤  θ(ꝓ,ꞡ)£(ꝓ, ꞡ) + φ(ꞡ,ꝗ)£(ꞡ, ꝗ)] ∀ ꝓ, ꝗ, ꞡ ε $. 

A pair ($, £) is called a double controlled metric-like  space. 

Definition 2.6 [12] 

Let $ ≠ ɸ and given a function θ,φ : $ x $  → [1,+ ∞). Let £ : $ x $  → C  be a function .is called  complex -valued double 

controlled metric if 

 £(ꝓ, ꝗ) ≥ 0, `     

 £(ꝓ, ꝗ) = 0 iff   ꝓ = ꝗ,       

 £(ꝓ, ꝗ) = £2(ꝗ, ꝓ),       

 £(ꝓ, ꝗ) ≤  θ(ꝓ,ꞡ)£(ꝓ, ꞡ) + φ(ꞡ,ꝗ)£(ꞡ, ꝗ)] ∀ ꝓ, ꝗ, ꞡ ε $. 

A pair ($, £) is called a complex- valued double controlled metric space.  

Definition 2.7[14] 

Let $ ≠ ɸ and given a function θ,φ : $ x $  → [1,+ ∞). Let £ : $ x $  → C be a function .is called  complex -valued double 

controlled metric - like if 
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 £(ꝓ, ꝗ) ≥ 0, `          

 £(ꝓ, ꝗ) = 0 implies    ꝓ = ꝗ,         

 £(ꝓ, ꝗ) = £2(ꝗ, ꝓ),      

 £(ꝓ, ꝗ) ≤  θ(ꝓ,ꞡ)£(ꝓ, ꞡ) + φ(ꞡ,ꝗ)£(ꞡ, ꝗ)] ∀ ꝓ, ꝗ, ꞡ ε $. 

A pair($, £) is called a complex-valued double controlled metric-like space. Every complex-valued double 

controlled metric space is, in general, also a complex-valued double controlled metric-like space. However, the converse 

does not hold in general. Furthermore, the notion of a complex-valued double controlled metric-like space is a 

generalization of the concept of a complex-valued extended b-metric space. 

Example 2.1[14] 

Let $ = {1.2, 3}. Let complex- valued double controlled metric like £: $ x $  →  C defined by  

£( 1, 1) = £( 2, 2) = 0, £(3,3) = 
௜

ଶ
, £(1,2 )= £(2,1) = 2+4i,£(2,3 )= £(3,2) = i, £( 1,3)= £(3, 1) = 1- i 

And θ, φ: $ x $  → [1,+ ∞) to be symmetry and  defined by  

θ(1,1)  = θ(2,2) = θ(3,3 ) = 1, θ(1,2) = θ(2,1) = 
଺

ହ
, θ(2,3) = θ(3,2) = 

଼

ହ
, θ(1,3) = θ(3,1) = 

ଵହଵ

ଵ଴଴
. 

φ(1,1)  = φ(3,3) = φ(2,2) =1, φ(1,2) = φ(2,1) = 
଺

ହ
, φ(2,3) = φ(3,2) = 

ଷଷ

ଶ଴
, φ(1,3) = φ(3,1) = 

଼

ଷ
 

Thus £ is complex- valued double controlled metric- like space. 

Note that, │£(2,1)│ = √20>  θ(2,1) │ £( 2,3)│+ θ(2,1)  │£( 3,1)│.Thus £ is not a  complex – valued  extended b- 

metric space for the function θ. 

Again, │£(2,1)│ = √20>  θ(2,3) │ £( 2,3)│+ θ(3,1)  │£( 3,1)│. Thus £ is not a complex- valued controlled 

metric- like space. 

Definition 2.5 [14] 

Let {ꝓσ} be a sequence in complex- valued double controlled metric – like  space ($, £ ). Then 

 {ꝓσ} is said to be convergent to ꝓ ε $ written as  

limσ→∞£(ꝓσ, ꝓ ) = 0.      

 {ꝓσ} is said to be Cauchy sequence in $ written as 

limσ,τ→∞£(ꝓσ, ꝓτ) = 0. 

 ($, £) is said to be complete if every Cauchy sequence is a convergent sequence. 

Definition 2.6 [14] 

Let ($, £) be a complex- valued double controlled metric-like space . Let ꝓ ε $ and 𝛿>0. 

 The open ball Bp (ꝓ, δ) is  

B (ꝓ, δ) = { ꝗ ε $, £( ꝓ,ꝗ) < δ}. 
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 The mapping T: $ → $ is said to be continuous at ꝓ ε $ if for all r > 0, there exists γ > 0 such that  

T(Bp (ꝓ, γ))  Bp (Tꝓ, r). 

Note that if t is continuous at p in ($, £), then pσ → p implies that  Tpσ → Tp when σ → ꝏ. 

MAIN RESULTS 

Theorem 3.1 

Let ($, £) be a complex – valued double controlled metric- like space. Consider the function  T : $ → $ such that  

(3.1)£(Tꝓ, Tꝗ) ≤ ( h(ꝓ) – h(Tꝓ) )£(ꝓ, ꝗ) for all ꝓ,ꝗ ε $.    

Where h: $ → R is a bounded function from below.  

For, ꝓo ε $, take ꝓσ  = Tσꝓ0. Moreover, assume that, for every ꝓ ε $, we have  

(3.2) limσ→∞θ( ꝓσ, ꝓ)   and limσ→∞ φ( ꝓ, ꝓσ,) exists and are finite and θ and φ satisfies the following conditions.  

(3.3) Supτ ≥1limσ→ꝏθ( ꝓi+1, ꝓi+2) φ(ꝓi+1, ꝓτ) / θ( ꝓi, ꝓi+1) <
ଵ

௞
   where k ε (0,1). 

Then T has a unique fixed point. 

Proof 

 Case 1: Assume that   there exists σ ≥ 0, such that. £( ꝓσ, Tꝓσ) = 0, which implies that ꝓσ  =  Tꝓσ. then ꝓσ is a 

fixed point of T. 

 Case 2: Assume that. £( ꝓσ, Tꝓσ)  >   0  for all σ ε N. Let us denote  bσ =£( ꝓσ-1, ꝓσ).  

From (3.1), we obtain 

bσ+1 =£( ꝓσ, ꝓσ+1) =£( Tꝓσ-1, Tꝓσ) ≤ ( h(ꝓσ-1) – h(Tꝓσ-1) )£(ꝓσ-1, ꝓσ) =  ( h(ꝓσ-1) – h(ꝓσ) )£(ꝓσ-1, ꝓσ) 

=  ( h(ꝓσ-1) – h(ꝓσ) )bσ 

(3.4) 0 <  bσ+1 / bσ ≤  ( h(ꝓσ-1) – h(ꝓσ) ), for all  σ ε N. 

Therefore, the sequence {h(ꝓσ} is required to be positive and non- increasing.                                   

Thus limσ→ꝏh(ꝓσ = r > 0, now using (3.4),we obtain  

∑ 𝑏ఙ
௜ୀଵ i+1 / bi     ≤ ∑ ℎ ఙ

௜ୀଵ ( ꝓi-1) – h(ꝓi)  = h(ꝓ0) -  h(ꝓ1) + h(ꝓ1) - h(ꝓ2) + h(ꝓ2) - h(ꝓ3) + … +   h(ꝓσ-1)  -  h(ꝓσ)  =  

h(ꝓ0) - h(ꝓσ) 

Which means that     ∑ 𝑏ꝏ
௜ୀଵ i+1 / bi<  ꝏ. Consequently, we have    

(3.5) limσ→ꝏ bi+1 / bi = 0.  

Taking into account (5), there exists i0 ε N such that all   i ≥ i0 

(3.6) bi+1 / bi = k for k ε (0,1). 

This gives that  

(3.7) £( ꝓσ+1, ꝓσ ) ≤  k £( ꝓσ, ꝓσ-1) for all  σ ≥ σ0 . 
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Now, we show that {ꝓσ} is a Cauchy sequence. From (3.7), we obtain 

(3.8) £( ꝓσ+1, ꝓσ) ≤  kσ £( ꝓ0, ꝓ1) for all  σ ≥ σ0 . 

For any σ,ρ ε N (σ < ρ),we have               

£( ꝓσ, ꝓρ) ≤  θ(ꝓσ , ꝓσ+1)£( ꝓσ, ꝓσ+1) +  φ(σ+1 , ꝓρ)£( ꝓσ+1, ꝓρ) 

≤  θ(ꝓσ , ꝓσ+1)£( ꝓσ, ꝓσ+1) +  φ(σ+1 , ꝓρ)[θ(ꝓσ+1 , ꝓσ+2)£( ꝓσ+1, ꝓσ+2) +φ(σ+2 , ꝓρ)£( ꝓσ+2, ꝓρ)] 

 =θ(ꝓσ , ꝓσ+1)£( ꝓσ, ꝓσ+1) +  φ(σ+1 , ꝓρ)θ(ꝓσ+1 , ꝓσ+2)£( ꝓσ+1, ꝓσ+2) + φ(σ+1 , ꝓρ) φ(σ+2 , ꝓρ)£( ꝓσ+2, ꝓρ) 

≤  θ(ꝓσ , ꝓσ+1)£( ꝓσ, ꝓσ+1) +  φ(σ+1 , ꝓρ)θ(ꝓσ+1 , ꝓσ+2)£( ꝓσ+1, ꝓσ+2) + φ(σ+1 , ꝓρ)φ(σ+2 , ꝓρ)θ(ꝓσ+2 , ꝓσ+3)£( ꝓσ+2, ꝓσ+3) 

+  φ(ꝓσ+1 , ꝓρ) φ(ꝓσ+2 , ꝓρ)φ(ꝓσ+3 , ꝓρ)£( ꝓσ+3, ꝓρ) 

≤ … 

≤ θ(ꝓσ , ꝓσ+1)£( ꝓσ, ꝓσ+1) + ∑ (∏௜
௝ୀఙାଵ

ఘିଶ
௜ୀఙାଵ φ(ꝓj , ꝓρ)θ(ꝓi , ꝓi+1)£( ꝓi, ꝓi+1))+∏ఘିଵ

௞ୀఙାଵ φ(ꝓk , ꝓρ)£( ꝓρ-1, ꝓρ)) 

≤ θ(ꝓσ , ꝓσ+1)k
σ£( ꝓ0, ꝓ1) + ∑ (∏௜

௝ୀఙାଵ
ఘିଶ
௜ୀఙାଵ φ(ꝓj , ꝓρ)θ(ꝓi , ꝓi+1)k

i£( ꝓ0, ꝓ1)) +∏ఘିଵ
௞ୀఙାଵ φ(ꝓk , ꝓρ)k

σ-1£( ꝓ0, 

ꝓ1))…   

≤ θ(ꝓσ , ꝓσ+1)k
σ£( ꝓ0, ꝓ1) + ∑ (∏௜

௝ୀ௢
ఘିଵ
௜ୀఙାଵ φ(ꝓj , ꝓρ)θ(ꝓi , ꝓi+1)k

i£( ꝓ0, ꝓ1))  

 (3.9)   Let Tl  = ∑ (∏௜
௝ୀ௢

௟
௜ୀ଴ φ(ꝓj , ꝓρ)θ(ꝓi , ꝓi+1)k

i£( ꝓ0, ꝓ1))                           

Consider Vi =  ∏௜
௝ୀ଴ φ(ꝓj , ꝓρ)θ(ꝓi , ꝓi+1)k

i£( ꝓ0, ꝓ1))  

We have 

(3.10) Vi+1/ Vi =  φ(ꝓi+1 , ꝓρ)θ(ꝓi+1 , ꝓi+2)k /  £( ꝓσ, ꝓρ) ≤  θ(ꝓσ , ꝓσ+1)£( ꝓσ, ꝓσ+1)                 

In view of condition 3.2 and ratio test, the series ∑ Vi converges. Thus limρ→∞Tσ exists. Hence the real sequence 

{Tσ} is Cauchy. 

Now using 3.8 we get  

(3.11) £( ꝓσ, ꝓρ) ≤  £( ꝓ0, ꝓ1)[k
σθ(ꝓσ , ꝓσ+1) + (Tρ-1 – Tσ) ]                                                   

We used θ(ꝓ , ꝗ)≥1. Letting σ,ρ→∞in 3.11  then obtain 

(3.12) limρ,σ→∞£( ꝓσ, ꝓρ)  = 0.                                                                                     

Thus the sequence {ꝓσ} is Cauchy sequence in $ and by the completeness of the space $, we can affirm that  some 

ꝓσ →  ꝓ* as σ→ꝏ. 

Now, we claim that ꝓ* is an fixed point, From (3.1) , we have 

(3.13) £( ꝓ*, ꝓσ+1)   ≤ θ(ꝓ*, ꝓσ)£( ꝓ*, ꝓσ)  +  φ( ꝓσ,, ꝓσ+1)£(ꝓσ,, ꝓσ+1).  

Knowing that the limit of θ(ꝓ*, ꝓσ) and  φ( ꝓσ,, ꝓσ+1) exists and are finite from ( 3.2) and using (3.12)  we can 

affirm that  

(3.14) limσ→∞£( ꝓσ, ꝓ
*)  = 0.  
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On the other hand, we have 

£( ꝓ*, Tꝓ*)   ≤ θ(ꝓ*, ꝓσ+1)£( ꝓ*, ꝓσ+1)  +  φ( ꝓσ+1,, Tꝓ*)£(ꝓσ+1,, Tꝓ*) 

                     = θ(ꝓ*, ꝓσ+1)£( ꝓ*, ꝓσ+1)  +  φ( ꝓσ+1,, Tꝓ*)£(Tꝓσ,, Tꝓ*) 

(3.15)           ≤  θ(ꝓ*, ꝓσ+1)£( ꝓ*, ꝓσ+1)  +  φ( ꝓσ+1,, Tꝓ*)( h(ꝓσ) – h(ꝓσ+1) )£(ꝓσ,, ꝓ
*). 

If we take the limit in (3.15) as σ →ꝏ and from (3.2) and (3.14) , we obtain  

£( ꝓ*, Tꝓ*)   = 0,  

That is ꝓ* is a fixed point of T.  

Assume that T has two fixed points  ꝓ*  and ꝓ** ( that is, Tꝓ* = ꝓ* and  Tꝓ** = ꝓ**). Then  

                    £( ꝓ*, ꝓ**)  = £( Tꝓ*, Tꝓ**) ≤  ( h(ꝓ*) – h(Tꝓ*) ) £( ꝓ*, ꝓ**)    

= (h(ꝓ*) – h(ꝓ*) ) £( ꝓ*, ꝓ**)   = 0. 

Therefore, £( ꝓ*, ꝓ**)   = 0   and      ꝓ* =  ꝓ**. 

Example 2.2 [10] 

Let $ = {1. 2,3}. Let complex- valued double controlled metric -like  £ : $ x $  →  C defined by  

£( 1, 1) = £( 2, 2) = 0, £(3,3) = 
௜

ଶ
, £(1,2 )= £(2,1) = 2+4i,£(2,3 )= £(3,2) = i, £( 1,3)= £(3, 1) = 1- i 

And θ, φ: $ x $  → [1,+ ∞) to be symmetry and  defined by  

θ(1,1) = θ(2,2) = θ(3,3 ) = 1, θ(1,2) = θ(2,1) = 
଺

ହ
, θ(2,3) = θ(3,2) = 

଼

ହ
, θ(1,3) = θ(3,1) = 

ଵହଵ

ଵ଴଴
. 

φ(1,1) = φ(3,3) = φ(2,2) =1, φ(1,2) = φ(2,1) = 
଺

ହ
, φ(2,3) = φ(3,2) = 

ଷଷ

ଶ଴
, φ(1,3) = φ(3,1) = 

଼

ଷ
 

Now  defined the self- mapping   T on  $ as follows  T(1) = T(2) = T(3) = 2,and  h defined on $ to R as  h(1) = 6, 

h(2) =   5 and h(3) = 9. 

Now verify the condition (3.1): 

 Case 1: When ꝓ = 1 ,ꝗ = 2 

│£( Tꝓ, Tꝗ) │ =  │£( T1, T2) │= │£( 2, 2) │ = 0 ≤ ( h(1) – h(T1))│£( 1, 2) │ 

                                                                                    = ( h(1) – h(2))│£( 1, 2) │ 

=  1. √20  = √20 .  

 Case 2: When ꝓ = 1 ,ꝗ = 1 

│£( Tꝓ, Tꝗ) │ =  │£( T1, T1) │= │£( 2, 2) │ = 0 ≤ ( h(1) – h(T1))│£( 1, 1) │ 

                                                                                    = ( h(1) – h(2))│£( 1, 1) │ 

=  1. 0  = 0 .  
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 Case 3: When ꝓ = 1 ,ꝗ = 3 

│£( Tꝓ, Tꝗ) │ =  │£( T1, T3) │= │£( 2, 2) │ = 0 ≤ ( h(1) – h(T1))│£( 1, 3) │ 

                                                                                    = ( h(1) – h(2))│£( 1, 3) │ 

=  1. √2  = √2.  

 Case 4: When ꝓ = 2 ,ꝗ = 1 

│£( Tꝓ, Tꝗ) │ =  │£( T2, T1) │= │£( 2, 2) │ = 0 ≤ ( h(2) – h(T2))│£( 2, 1) │ 

                                                                                    = ( h(2) – h(2))│£( 2, 1) │ 

                                                                                     =   0.√20  = 0 . 

 Case 5: When ꝓ = 2 ,ꝗ = 2 

│£( Tꝓ, Tꝗ) │ =  │£( T2, T2) │= │£( 2, 2) │ = 0 ≤ ( h(2) – h(T2))│£( 2, 2) │ 

                                                                                    = ( h(2) – h(2))│£( 2, 2) │ 

                                                                                     =   0.0  = 0 .  

 Case 6: When ꝓ = 2 ,ꝗ = 3 

│£( Tꝓ, Tꝗ) │ =  │£( T2, T3.) │= │£( 2, 2) │ = 0 ≤ ( h(2) – h(T2))│£( 2, 3) │ 

                                                                                    = ( h(2) – h(2))│£( 2, 3) │ 

                                                                                     =   0.1  = 0 .  

 Case 7: When ꝓ = 3 ,ꝗ = 1 

│£( Tꝓ, Tꝗ) │ =  │£( T3, T1) │= │£( 2, 2) │ = 0 ≤ ( h(3) – h(T3))│£( 3, 1) │ 

                          = ( h(3) – h(2))│£( 3, 1) │ 

                            =   4.√2 . 

 Case 8: When ꝓ = 3 ,ꝗ = 2 

│£( Tꝓ, Tꝗ) │ =  │£( T3, T2) │= │£( 2, 2) │ = 0 ≤ ( h(3) – h(T3))│£( 3, 2) │ 

                                                                                    = ( h(3) – h(2))│£( 3, 2) │ 

                                                                                     =   4. 1=  4. 

 Case 9: When ꝓ = 3 ,ꝗ = 3 

│£( Tꝓ, Tꝗ) │ =  │£( T3, T3) │= │£( 2, 2) │ = 0 ≤ ( h(3) – h(T3))│£( 3, 3) │ 

                                                                                    = ( h(3) – h(2))│£( 3, 3) │ 

                                                                                     =   4. 1/2=  2. 
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For all k ε (0,1) ,  it is clear that the above conditions are satisfied, these conditions are also satisfied for T(1) = 

T(2)  =T(3)  = 1. For any ꝓ0 ε $ condition (3.2) holds along with conditions of theorem 3.1. Therefore, there exists a unique 

fixed point at 1.  

CONCLUSIONS 

The results obtained in the setting of complex-valued double controlled metric-like spaces generalize those of Souayah and 

Hidri [15] and other related works 
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